COMPUTERIZED TOMOGRAPHY
The Idea Behind CAT Scanners

by Jerome Dancis

Computerized tomography is the technique of making pictureé of a
cross-section (or a slice) of an object. The pictures are produced from -the
results of mathematical ahalysis. The cat scanners, which locate tumors and
blood clots in a brain, are computerized, x-ray tomograﬁhy machines.

 One Way to make a solid, 3-dimensional "picture" of an object is to
make a set of pictures of many cross=sections.

Each piéture consists of a large-number of gray squares. How light or
dark a particular gray square will be is determined by the "numbers"
calculated by the corriputer. The bigger the "number"”, the darker the square
will be colored. The numbers are related to the "x-ray optical- density" for the
material in the square. The "x-ray optical density" is _r“elated to the
percentage of x-rays absorbed by a unit thickness of material as the x-rays
pass through the material.} Different tissues (bones, muscle, fat, tumors,blood,
blood clots) have different "x-ray optical densities". Therefore each tissue
will be colored by a different shade of gray. Bones absorb about twice as
many x-rays as do most other tissues. Therefore bones are easily
distinguished. Unfortunatelj, the "x-ray density" for the other tissues vary
by at most 5%. Sometimes the physicians must be able to distinguish a tissue
kwhosé "x-ray density" differs by only 1% from its surroundings. Therefore
the "x-ray densities" must be calculated with great accuracy in spite of the
small errors being made by both the x:-ray equipment and the computer.

We shall now describe how the "x-ray densities" for each point may
be calculated.

Basic Tomography Example A.l. Suppose that we wish to make a picture of

some cross-section.



- Suppose that we mentally divide this cross-secfion into 12

square pieces:

1 2 3
4 5 6
. 7 8 -9
. 10 | 11 ¢ 12 —

When x~rays penetrate an objeét, a fixed percentage of the
x=rays are absorbed by the object and the remaining x-rays go
through the object. Thefefore, letmai be the percentage of
x-rays absorbed by square #1i. '

_—> _>
. .
b —x-rays enter aib b—aib = (l—ai)b_
square {1 x~raysabsorbed x-rays leave square
by square #i #1i

Now let us examine what happens to x-rays which are trans-

mitted through the top row of the section:
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x~rays penetratel x-rays penetrate x-rays penetrate
- sq. #l_and : sq. #2 and : sq. #3. and hit
enter sq. #2 ;—enter sq. #3 | x~ray film
Check that the number of x-rays which penerate all 3'squares
is '
r = (1-33)b2 = (l-a3)(l-a2)b2 .
(A.1) r = (1—a3)(1-a2)‘(1-a1)bo

In this equation the unkowns are

are known ;

b
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is the amount of. x-rays emitted and
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‘and r

is the amount

of -x~rays which come out the other side and hit the x~-ray film.

The film is developed and then this number

a"densitometer"

If we do this along twelve different lines(as
we will" obtain 12 equations in the 12 unknowns

how can this system be solved?

r 1is

a

"counted" by

1 a0

cesd.

The equations are not 1inear,

in Figure A-l),_

12° But

they

are a collection of products instead of sums. Fortunately logarithme

convert products into sums. Set each

x 1og(l-ai).

i

Then equation (A.1l) is converted into:



o \ - no. of x-rays -. -
(4.2) i - » {which penetrate }
" x. + x4+ x = log ﬁ; = 1log the cross~section

0o no. of x-rays
transmitted

As we will see, this is a typical "linear demsity" type of equation.

- This equation, togethér with the next Ehree propositions, is the
inspiration for the following definitionms. -

_ Definitions. The total optical mass (along a line) is given by the

formula . ‘ -

no. 0f x-rays which penetrate
no. of X-rays transmitted

-9

- - log

namely the right hand side of Equation A.2; The optical density

of a tissue(or of some material)is the total optical mass of the

tissue along a line of length one.

.)

Proposition A.2. Along a line with diffefent blocks:

Opticai_g X. X X .o X X-rays
mass 1 2 3» n —
- _ . . = qptical mass
{total optical mass} xl'+x2'+---'+xn E {for block #i}

Remark. This proposition is a corollary of the derivation of Equation
(A.2). ' |

Proposition A.3. For a "uniform" tissue:

{total optical mass} = {length} x {optical density}

Remark. The proof of this prdposition_is preéented later in this

section.



Proposition é.A. Along a line, with'different ﬁnifbrm;biocks of jissueé,

)

block = : 1. 2 3 ... =a
optical . o) P ol . e o}
density 1 2 3 o
lengths : Kl £2 £3 .o ﬁn

£ + 4 . L
1P ,Py * e+ L P

{ total optical mass } 1 n P

: Z{iength #1 F x { optical density #i}
- i )

Remark. This proposition is a corollary of Ehe preceding two pro-

positions.

We now choose twelve lines and we wriﬁq down the equations

for the ;o%al'optical mass along these lines.
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Figure A-1 ,
let Sj be the amount of x-rays emitted along line #j. Let
rj be the reading by the densitomete? on the x~-ray film situated
opposite the soarce for Sj" Let thg side qf eaiﬁ square have
length one and hence the diagonals have length /2 .

The equations for these x-ray emissions are:

—~——



reading on )
- ] : P 10 densitometer./.

line.i| - total optical mass = 8 amount of
:‘ {g-rays emittéé}
: at soarce
1 i _ Py * le+ Py = log rllsl
- ) ,: :; P, * Ps + Py f log r,/s, -
é i Py + Pg + p9 = log'r3/s3
- e : _ plo+v"11+°12—=; log /sy
) _ 5 ; pld + P, + P, +pp = isg rS/s5
6 : Pyt Pg + ps + P, = lo% £6/s6 )
7 : /2_p2+/§‘1.34 = log r7/s7
8 i /;plz'*\/?Pg;ﬁ P, = log r8/s8
9 : V2 Py +yV§ps-+V§'pl = 1log r9/s9
10 : B VE'p6 +V2 Py = 1log FlO/s10
11 : V§p6+-V§p84-V§plo = log rll/s11
12 i Vfb34-Vfb5+-Vfb7 = 1log rlz/s12

We now have twelve linear equations in twelve unknowns
(pl,pz,...,plz). These equations may be solved (on a cdmputer)
and the p's will be found.

The computer can now print a picture of the cross-section
in which the squares with higher p's will be colored darker
shades of gray. - _

The proof of Proposition A.3 is explained by the following

lemmas.

Lemma A.5. Suppose we have two pieces of the some tissue but one

piece is n times the length of the second piece, where n 1is



an integer. Then: 7 : _ . _ -

optical mass ; ’ -
- ) - _ ptical mass -
. = X
. for Big piece - n <%or small piec%}

(n times as long)

Proof. We mentally divide the big piece into n equal parts, where
each part is identical to the small piece. Let x be the optical

mass for the small piece. Then the picture is:

big piece : x| x . X

small piece: x

Proposition A.4 says that:

optical mass | _ ~ _ |
<for big piecé} x+x+ ... + x nx. v

n times

) Lemma A.6. A piece of tissue, with optical density p and length
n/m, has total optical mass, (n/m)p, when n and m are

integers.

Proof. Consider three pieces of this tissue with optical density p:

optical mass: : X X
P ¢ _xl |- n n

length: 1 - n n/m
The preceding lemma says that

X = nx and b.o = mx
n 1 n m

Therefore



Outline of proof of Proposition A.3. When the length ié V2 ..

- Consider three pieces of this tissue with optical dénsity‘—pq

optical mass @ X b
P 1 Xz

length : 1.4141 Y2 1.4142

~ _Since VZ 1is between 1.4141 and 1.4142, the optiéal mass -

x will be between Xl and x2. Therefore

- 1.4141p = x; > X > X, = 1.4142 p

( the inequalities are backwards because the optical densities are
negative). - - o - -

Therefore 1f we také a limit as the left tissue expands to
length V2 and as the right tissue is shrunk to length V2, the
result will be ’

x = V2 p v

Now, we will discuss the situation involved in making a
plcture of a cross section of a head. A cross-section of a head,
together with a small region around the head, is divided into
squares of size 1 mm to 1% mm. This results in dividing the
cross-section into about 25,000 tiny squares. This results in
25,000 unknownsand'therefore 25,000 equations are needed. A
linear system consisting of 25,000 "spérse" equations in 25,000

unknowns, can be solved, with difficulty, on a computer.

In the future,_many_sgiengigtst_engineers and techﬁiéians
will be using new»l(nqtng;.inventeij computerized tomography
machines to "look inside™ all sorts of objects. Today,
computerized tomography machines are being developed which make
a motion ﬁicture of a heart beating. This will enable physicians

- to determine the amount of damage cause by a heart attack.



The Basic Tomography Example presents the basic i1dea behind
tomography. This is the_example that physicicans and engineers - _
should have in mind when they look at tomography pictures. )

. The Basic Tomography Example A.l is an oversimplified idealized
view of computerized tomography. The problem with the example is that
it ignores all sorts of complications. The complications come’ ’
from mathematics, computers, xXx-ray machines, x-ray films, etc.

In order to overcome these complicetions, a much more sophisticated
and complicated method ié used. A master degree in applied mathe-

matics is needed in order to fully understand the current methods.

But the Basic Tomography Example A.l explains the basic idea behind
computerized tomography and it is the example that was in the

back of the minds of_the researchers who successful developed_

computerized tomography.-

To find out more about computerized tomography, you may

browse the following articles. Look at the pictures,
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The mathematical discussion bg how x-rays penetrafe tissue
(Propositions A.2, A.3 and A.4) is aiso valid in many different
contexts. In the exercises, these propositioné’will be used toA
examine such diverse applications as light penétrating glass and
gamma rays penetrating ground beef (in order to determine the fat

content),

EXERCISES

Exercise A.7. Suppose an ordinary x-ray [icture of a round bone in

an arm is being taken (no tomography). Suppose that 10 units
of x-rays are shot. Find the amount of x-rays which reach

points #1,2,3 in this diagram: ‘
A A e B

Avem , i
Cross- §ectror : £ lm
g ' - g




PRI

_ ;Sup§o§é fhat the-xfray;bpﬁiqgl:dénéity_of“tbe bone is
= -2 and of the flesh p. . = -1, - - -
Your answersA§hdpld-help.y¢u understand why the edges of a

bone appear very Vclbud¥likgfzqn the film of an ordinary x-ray

Pp

negative. . - . e o C e e

.Exercise AQS.A,Let'fg.Vbe thefx-réy'optidalfdcnsity for steel.

(a) ~ Suppose that some parallel X-rays pénef;até a sheet of steel

T 0: = inTenstiy
ofF emi+re

p e a\{s
’ . _———— =D - . - - )
o 10 = antesidy
). O{ )(—FQYS -v\.’t\\f}\
pepetrate o cteel
o o sheet o%f +thiekness ¥.
Show- that T

I(x) = 1I(0)eX.

(b) Suppose the sheet of steel has a crack. Explain why the
crack will be displayed on an ordinary x-ray picture (no tomo-
graphy) of the sheet. ’ N



(p) Let us consider an oil pipeline made of s}eel and filled

with oil. Suppose there is a-crack on the inside of.tbe pipe.

steel is8 3 times the density of oil. Explain
.be displayed on an ordinary x-ray picture (no

cracked section of the oil pipeline.

Exercise A.9. Suppose that a one cm. thick piece
absorbs 15% of the light which passes through

(No leakage yet!) Suppose that t@e x~ray optical density of

why the crack will
tomography) of the

of tinted glass
it. How thick

nust the glass be in order to absorb 90% of the light?
Usa the fact that light s absorbed by glass in the same

mathenatical manner as X-rays are absorbed by tissue. Therefore

) Proposition A.3 1is also valid for light passing through tinted

glass. ' -

e

gigrcisethglo. The optical density for light rays passing through

sea-water is -1.4 (when distance 1is measured in meters.)

(a) Suppose there is a light above a column of sea-water.

J l sun fight

Show that
) _ I(x) = 1(0)e 1'4%,
P.12

'(::ijjj' :Igg; —

54 Hhe woter (K=o

J:mengf%
on 'fhe SUr a ce

10<>-;rﬂ+e.we[+ 5t lighT
R



(b) Calculate the percentage-of light which goes through 10
meters of water. Explain why very little vegetation growq in

the ocean at depths greater than 10 meterq.

PN — - . . - - T . - . -t . - R -

Reﬁark. The formula
I(x) = I(0)e . _

is the Bouguer:Lambert Law of photometry. Pierre Bouguer (L698-
1758) studied the absorption of light.in the atmosphere. Johann
“Lambert (1728-1777) stated this law for-homogeneous transparent

substances _ : i - _

One method that supermarketsl use for preparing ground beef
is to mix ground fatty meat2 from bin #1 together with ground
) lean cow meat3 from bin #2. Gamma rays are shot through the
| fatty meat in bin #1 and through the lean meat in bin #2 in
order to determine the fat content in each bin. (As in Exercise
— A, 12). The fat content in each bin changes from batch to batch.
Then the fat and lean meat is mixed together, in just the right
proportions, in order to obtain the exact fat content desired by
the supermerket management.
Let us examine the penetration of ground beef by gamma rays.
Some of the gamma rays are absorbed by the ground beef in the

same mathematical manner as some of the xX-rays are absorbed by

.1 The Safeway supermarkets in the Washington, D.C. arca
prepare the bulk of their ground beef in the manner described
here.. (Ref. 1979 Food issue of the magazine: Washington
Consumer's Checkbook)-

2 The fatty meat is the left-over meat which was trimmed off
the regular meat cuts. It has much more than the 30% fat allow-
able for '"ground beef",

ﬁ - 3 The lean cow meat is not of sufficiently high quality tc
ve s0ld as regular stea¥s or roasts.

P.13



tissue. Therefore Propositions A<2, A.3 and A.4 are still valid

and therefore they may be used. Suppose that the gamma ray

density for fat is Pe = -1.0 and for muscle is p = -1.03
- - n
where each - )
<
fraction of the gammal
p = 1log rays which penetrates
10 .
1 mm. of tissue. J
gamma rays N gamma ray reader
L —— Ground beef | —

Exercise A.1ll. Supposegﬁe—have a line consisting of 10 1 mmfsquareé-
of fat and 40 1 mm-squares of muscle.' - )
(a) Find the total gamma—rag-optical-mass of this line.

(b) Suppose that a 10 unit éamma-;ay is fired along this 1line.

What 1is the strength of the beam which comes out of the other end?

Exercise A.12, Suppose that the bins of chopped meat are 100 mm long

and that 10 unit gamma rays are shot through the 100 mm of meat
-~> {14 1
j in each bin., Let m be the percentage of muscle in the bin '

-

and letl:% be thg percentage of fat. (Therefore m+ £ =1 .)
(a) Find the total gamma-ray optical-mass of the meat in the bin
(in terms of m ana £). 4 T
(b) What 1s the strength of the beam which comes out of the other
end (in terms of m and f)? )
(c) Suppose that the gamma ray readings (on the other sid.) are
(1)  0.9660 for bin #1 |
(ii) 0.9397 for bin #2.
‘Caléulate the percentage of fat in each bin.
(d) Suppose that the supermarket manager has decided that the
"l'egular'i ground beef will be 25% fat and that the "premium" or
"lean" ground beef will be 15% fat. 1In what proportions should
“the meat from bins #1 and 2 (of part c) be mixed in order to
nroduce "regular” ground beef? "Lean' ground beef? |
(f) Find the function F which will calculate the amount of

fat, f, in terms of r, the gamma-ray reading on the other side:

£ = TF(r).



We will state the two basic arithmetic rules for electrical
networks consisting of resistors.- (These rules‘are consequences

of Kirchoff's voltage and current laws.?)
be the “resistances" of two wires and _

-Let R: and R2
together,

1 4
let R  be the total resistance due to the two wires

Resistors connected in series rule

R = R, + R .

— - _‘ 7 —
1 ) wice #2 !) wive # 2 ‘) )
A

- Rg | R; -

Resistors connected in parallel rule

1, 1

Ry By

wha
0
|
*

)
Exercise A.13.

_____ resistance of - length X(fresis_tance of
a copper wire of wire a piece (of the
same wire) with

length equal to
one

Using Proposition A.3 as a ''model'", show that

1] meter

be

Exercise A.l4, Let R1 be a piece of copper wire which is

long and whose cross section is a
1 meter long piece of copper wire and let its cross

Show that

l] mm square. Let R6

another
section be a 2 mm x 3 mm rectangle.

R §
Re = % Ryv



Exercise A.15. Let Rl and RA be two- pieces of copper wire with

the same léﬁgths. Let 1 and A be the cross-sectional area

of the two pfeces. Show that

- ) l -
R4 = A Rl.
Hint: Modify our discussion on optical density in order to
show that EL = %'x iL . '
1 4

-RemArk. Electrical engineers uwsually describe the fesu}ts of the

last three exercises by saying that the resistance of a wire

is proportional to its length and is inversely proportional to
its cross-sectional area. ' B



- Exercise A.16 Suppose we are doing tomography on'é sguare section

consisting of 4 squares: -

(a) ¥Find the matrix equation when x-rays are shot along the -

4 directions S, 82,_53 and 54. _

Check that this 4 x 4 matrix is invertible. - _

(b) Pind the matrix equation when x-rays are shot along the ¢

directions 81, 92, 53 and ss.

Check that this 4 » 4 matrix is not invertible.

Exercise A.17 In the preceding exercise, suppose X-rays are shot
Aalong all 5 directions. That the values come from real data,
hence they have some measurement errors. Set this up as a
igast squares fit problem. <Check that ker M = o..

Exercise A.18 In the tomography example worked out in this
section, suppose that 5, is replaced by 8.4 which shoots
x-rays straight up the column on the right side.

Check that the resulting 12 x 12 matrix is not invertible.

T ' 4 - . p. 17 -
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